Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652717

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Cystic Fibrosis , Cytokines , Epithelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/virology , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cytokines/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Phage Therapy , Bacteriophages/physiology , Bacteriophages/genetics , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Pseudomonas Infections/therapy , Pseudomonas Infections/immunology , Pseudomonas Phages/metabolism , Biofilms
2.
Sci Rep ; 14(1): 2657, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302552

Bacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB). Notably, a thorough phage characterization and the evolutionary selection pressure exerted on bacteria by phages, analogous to antibiotics, are incorporated into the pipeline.


Bacteriophages , Phage Therapy , Pseudomonas Infections , Pseudomonas Phages , Humans , Pseudomonas aeruginosa , Universities , Pseudomonas Phages/genetics , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology
3.
bioRxiv ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38370761

Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.

4.
Stem Cells ; 42(3): 230-250, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38183264

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.


COVID-19 , Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Humans , SARS-CoV-2 , Proteomics , Immunotherapy , Inflammation
5.
Infect Dis Clin North Am ; 38(1): 149-162, 2024 Mar.
Article En | MEDLINE | ID: mdl-38280761

Patients with cystic fibrosis (CF) often develop respiratory tract infections with pathogenic multidrug-resistant organisms (MDROs) such as methicillin-resistant Staphylococcus aureus, and a variety of gram-negative organisms that include Pseudomonas aeruginosa, Burkholderia sp., Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nontuberculous mycobacteria (NTM). Despite the introduction of new therapies to address underlying cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, MDRO infections remain a problem and novel antimicrobial interventions are still needed. Therapeutic approaches include improving the efficacy of existing drugs by adjusting the dose based on differences in CF patient pharmacokinetics/pharmacodynamics, the development of inhaled formulations to reduce systemic adverse events, and the use of newer beta-lactam/beta-lactamase combinations. Alternative innovative therapeutic approaches include the use of gallium and bacteriophages to treat MDRO pulmonary infections including those with extreme antibiotic resistance. However, additional clinical trials are required to determine the optimal dosing and efficacy of these different strategies and to identify patients with CF most likely to benefit from these new treatment options.


Anti-Infective Agents , Cystic Fibrosis , Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections , Stenotrophomonas maltophilia , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
J Investig Med High Impact Case Rep ; 11: 23247096231188243, 2023.
Article En | MEDLINE | ID: mdl-37515541

Cystic fibrosis (CF) is an important monogenic disease that affects more than 70 000 people worldwide. Defects of the CF transmembrane conductance regulator gene lead to dehydrated viscous secretions that result in chronic bacterial colonization. This leads to frequent recurrent lung infections called pulmonary exacerbations, lung inflammation, and resulting structural lung damage called bronchiectasis. Pseudomonas aeruginosa in particular is a common pathogen in persons with CF associated with increased pulmonary exacerbations, long-term lung function decline, and reduced survival. In addition, P. aeruginosa commonly develops antibiotic resistance and forms biofilms, making it difficult to treat. Here, we report the details of two patients with CF with pan-drug-resistant P. aeruginosa who were treated with a novel therapeutic strategy, bacteriophages. These cases highlight the need for further research and development of this treatment modality, including pediatric clinical trials.


Cystic Fibrosis , Phage Therapy , Pseudomonas Infections , Humans , Child , Cystic Fibrosis/therapy , Cystic Fibrosis/drug therapy , Pseudomonas aeruginosa , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Lung
7.
Antibiotics (Basel) ; 12(4)2023 Apr 10.
Article En | MEDLINE | ID: mdl-37107097

Pseudomonas aeruginosa (PsA) is an opportunistic bacterial pathogen that causes life-threatening infections in individuals with compromised immune systems and exacerbates health concerns for those with cystic fibrosis (CF). PsA rapidly develops antibiotic resistance; thus, novel therapeutics are urgently needed to effectively combat this pathogen. Previously, we have shown that a novel cationic Zinc (II) porphyrin (ZnPor) has potent bactericidal activity against planktonic and biofilm-associated PsA cells, and disassembles the biofilm matrix via interactions with eDNA In the present study, we report that ZnPor caused a significant decrease in PsA populations in mouse lungs within an in vivo model of PsA pulmonary infection. Additionally, when combined with an obligately lytic phage PEV2, ZnPor at its minimum inhibitory concentration (MIC) displayed synergy against PsA in an established in vitro lung model resulting in greater protection of H441 lung cells versus either treatment alone. Concentrations above the minimum bactericidal concentration (MBC) of ZnPor were not toxic to H441 cells; however, no synergy was observed. This dose-dependent response is likely due to ZnPor's antiviral activity, reported herein. Together, these findings show the utility of ZnPor alone, and its synergy with PEV2, which could be a tunable combination used in the treatment of antibiotic-resistant infections.

8.
Crit Care ; 27(1): 34, 2023 01 23.
Article En | MEDLINE | ID: mdl-36691080

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Bacteremia , COVID-19 , Coinfection , Community-Acquired Infections , Humans , Male , SARS-CoV-2 , Cohort Studies , Retrospective Studies , Respiration, Artificial , Pandemics , Hospital Mortality , Bacteria , Risk Factors , Intensive Care Units
9.
Am J Respir Cell Mol Biol ; 68(1): 75-89, 2023 01.
Article En | MEDLINE | ID: mdl-36125351

The mechanisms by which excessive systemic activation of adaptive T lymphocytes, as in cytokine release syndrome (CRS), leads to innate immune cell-mediated acute lung injury (ALI) or acute respiratory distress syndrome, often in the absence of any infection, remains unknown. Here, we investigated the roles of IFN-γ and IL-17A, key T-cell cytokines significantly elevated in patients with CRS, in the immunopathogenesis of CRS-induced extrapulmonary ALI. CRS was induced in wild-type (WT), IL-17A- and IFN-γ knockout (KO) human leukocyte antigen-DR3 transgenic mice with 10 µg of the superantigen, staphylococcal enterotoxin B, given intraperitoneally. Several ALI parameters, including gene expression profiling in the lungs, were studied 4, 24, or 48 hours later. Systemic T-cell activation with staphylococcal enterotoxin B resulted in robust upregulation of several chemokines, S100A8/A9, matrix metalloproteases, and other molecules implicated in tissue damage, granulocyte as well as agranulocyte adhesion, and diapedesis in the lungs as early as 4 hours, which was accompanied by subsequent neutrophil/eosinophil lung infiltration and severe ALI in IFN-γ KO mice. These pathways were significantly underexpressed in IL-17A KO mice, which manifested mildest ALI and intermediate in WT mice. Neutralization of IFN-γ worsened ALI in WT and IL-17A KO mice, whereas neutralizing IL-17A did not mitigate lung injury in IFN-γ KO mice, suggesting a dominant protective role for IFN-γ in ALI and that IL-17A is dispensable. Ruxolitinib, a Janus kinase inhibitor, increased ALI severity in WT mice. Thus, our study identified novel mechanisms of ALI in CRS and its differential modulation by IFN-γ and IL-17A.


Acute Lung Injury , Interleukin-17 , Humans , Mice , Animals , Cytokine Release Syndrome , Interferon-gamma , Cytokines , Lung/pathology , Acute Lung Injury/pathology , Mice, Knockout , Mice, Inbred C57BL
10.
Yale J Biol Med ; 95(4): 413-427, 2022 12.
Article En | MEDLINE | ID: mdl-36568830

The rise of antimicrobial resistant (AMR) bacteria is a global public health threat. AMR Achromobacter bacteria pose a challenging clinical problem, particularly for those with cystic fibrosis (CF) who are predisposed to chronic bacterial lung infections. Lytic bacteriophages (phages) offer a potential alternative to treat AMR infections, with the possible benefit that phage selection for resistance in target bacteria might coincide with reduced pathogenicity. The result is a genetic "trade-off," such as increased sensitivity to chemical antibiotics, and/or decreased virulence of surviving bacteria that are phage resistant. Here, we show that two newly discovered lytic phages against Achromobacter were associated with stabilization of respiratory status when deployed to treat a chronic pulmonary infection in a CF patient using inhaled (nebulized) phage therapy. The two phages demonstrate traits that could be generally useful in their development as therapeutics, especially the possibility that the phages can select for clinically useful trade-offs if bacteria evolve phage resistance following therapy. We discuss the limitations of the current study and suggest further work that should explore whether the phages could be generally useful in targeting pulmonary or other Achromobacter infections in CF patients.


Achromobacter , Bacteriophages , Cystic Fibrosis , Phage Therapy , Humans , Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/therapy , Cystic Fibrosis/complications
11.
Clin Chest Med ; 43(4): 667-676, 2022 12.
Article En | MEDLINE | ID: mdl-36344073

Patients with cystic fibrosis (CF) often develop respiratory tract infections with pathogenic multidrug-resistant organisms (MDROs) such as methicillin-resistant Staphylococcus aureus, and a variety of gram-negative organisms that include Pseudomonas aeruginosa, Burkholderia sp., Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nontuberculous mycobacteria (NTM). Despite the introduction of new therapies to address underlying cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, MDRO infections remain a problem and novel antimicrobial interventions are still needed. Therapeutic approaches include improving the efficacy of existing drugs by adjusting the dose based on differences in CF patient pharmacokinetics/pharmacodynamics, the development of inhaled formulations to reduce systemic adverse events, and the use of newer beta-lactam/beta-lactamase combinations. Alternative innovative therapeutic approaches include the use of gallium and bacteriophages to treat MDRO pulmonary infections including those with extreme antibiotic resistance. However, additional clinical trials are required to determine the optimal dosing and efficacy of these different strategies and to identify patients with CF most likely to benefit from these new treatment options.


Cystic Fibrosis , Methicillin-Resistant Staphylococcus aureus , Pseudomonas Infections , Respiratory Tract Infections , Stenotrophomonas maltophilia , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Pseudomonas aeruginosa , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy
12.
Oxid Med Cell Longev ; 2022: 9518592, 2022.
Article En | MEDLINE | ID: mdl-36193076

Aims: Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). Results: Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. Conclusion: In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.


Acute Lung Injury , Hyperoxia , Lung Injury , Acute Lung Injury/metabolism , Adenosine Diphosphate/pharmacology , Animals , Apoptosis , Caspase 3/metabolism , ErbB Receptors/metabolism , Humans , Hyperoxia/complications , Hyperoxia/metabolism , Lung/metabolism , Lung Injury/etiology , Lung Injury/metabolism , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
13.
BMJ Open ; 12(6): e060664, 2022 06 06.
Article En | MEDLINE | ID: mdl-35667714

INTRODUCTION: The COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalised with severe COVID-19. The Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis (ISPY COVID-19 trial) was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation and challenges of the ISPY COVID-19 trial during the first phase of trial activity from April 2020 until December 2021. METHODS AND ANALYSIS: The ISPY COVID-19 Trial is a multicentre open-label phase 2 platform trial in the USA designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID-19 Trial network includes academic and community hospitals with significant geographical diversity across the country. Enrolled patients are randomised to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes-time to recovery and mortality. The statistical design uses a Bayesian model with 'stopping' and 'graduation' criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrols to a maximum of 125 patients per arm and is compared with concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrolment and adaptation of the trial design are ongoing. ETHICS AND DISSEMINATION: ISPY COVID-19 operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: NCT04488081.


COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Bayes Theorem , Humans , Pandemics , SARS-CoV-2 , Treatment Outcome
14.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L822-L841, 2022 06 01.
Article En | MEDLINE | ID: mdl-35438006

Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.


Lung Diseases , RNA, Long Noncoding , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelium/metabolism , Humans , Lung Diseases/metabolism , RNA, Long Noncoding/genetics , Respiratory Mucosa/metabolism
15.
Front Immunol ; 11: 1311, 2020.
Article En | MEDLINE | ID: mdl-32676080

Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.


Coronavirus Infections/pathology , Cytokine Release Syndrome/drug therapy , Interferon-gamma/genetics , Interleukin-17/genetics , Janus Kinase Inhibitors/therapeutic use , Pneumonia, Viral/pathology , Pyrazoles/therapeutic use , Animals , COVID-19 , Cells, Cultured , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Cytokines/immunology , HLA-DR3 Antigen/genetics , Intestine, Small/immunology , Intestine, Small/pathology , Lymphocyte Activation/drug effects , Mice , Mice, Knockout , Nitriles , Pandemics , Pneumonia, Viral/drug therapy , Pyrimidines , T-Lymphocytes, Helper-Inducer/immunology
16.
Cell Host Microbe ; 25(2): 219-232, 2019 02 13.
Article En | MEDLINE | ID: mdl-30763536

Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.


Bacterial Infections/therapy , Phage Therapy/methods , Biomedical Research/trends , Humans , Phage Therapy/trends
17.
Am J Respir Cell Mol Biol ; 61(2): 185-197, 2019 08.
Article En | MEDLINE | ID: mdl-30742488

Methicillin-resistant Staphylococcus aureus (MRSA) is a versatile human pathogen that is associated with diverse types of infections ranging from benign colonization to sepsis. We postulated that MRSA must undergo specific genotypic and phenotypic changes to cause chronic pulmonary disease. We investigated how MRSA adapts to the human airway to establish chronic infection, as occurs during cystic fibrosis (CF). MRSA isolates from patients with CF that were collected over a 4-year period were analyzed by whole-genome sequencing, transcriptional analysis, and metabolic studies. Persistent MRSA infection was associated with staphylococcal metabolic adaptation, but not changes in immunogenicity. Adaptation was characterized by selective use of the tricarboxylic acid cycle cycle and generation of biofilm, a means of limiting oxidant stress. Increased transcription of specific metabolic genes was conserved in all host-adapted strains, most notably a 10,000-fold increase in fumC, which catalyzes the interconversion of fumarate and malate. Elevated fumarate levels promoted in vitro biofilm production in clinical isolates. Host-adapted strains preferred to assimilate glucose polymers and pyruvate, which can be metabolized to generate N-acetylglucosamine polymers that comprise biofilm. MRSA undergoes substantial metabolic adaptation to the human airway to cause chronic pulmonary infection, and selected metabolites may be useful therapeutically to inhibit infection.


Cystic Fibrosis/microbiology , Lung Diseases/microbiology , Methicillin-Resistant Staphylococcus aureus/metabolism , Pneumonia, Staphylococcal/microbiology , Staphylococcal Infections/microbiology , Acetylglucosamine/metabolism , Adult , Animals , Biofilms , Bronchi/metabolism , Bronchoalveolar Lavage Fluid , Cystic Fibrosis/metabolism , Cytokines/metabolism , Female , Fumarates/metabolism , Gentamicins/pharmacology , Glucose/metabolism , Humans , Lung Diseases/metabolism , Malates/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phylogeny , Pneumonia, Staphylococcal/metabolism , Pyruvic Acid/metabolism , Staphylococcal Infections/metabolism , Transcription, Genetic , Tricarboxylic Acids/metabolism , Whole Genome Sequencing
18.
Sci Rep ; 7(1): 10882, 2017 09 07.
Article En | MEDLINE | ID: mdl-28883468

Macrophages (MΦs) with mutations in cystic fibrosis transmembrane conductance regulator (CFTR) have blunted induction of PI3K/AKT signaling in response to TLR4 activation, leading to hyperinflammation, a hallmark of cystic fibrosis (CF) disease. Here, we show that Ezrin links CFTR and TLR4 signaling, and is necessary for PI3K/AKT signaling induction in response to MΦ activation. Because PI3K/AKT signaling is critical for immune regulation, Ezrin-deficient MΦs are hyperinflammatory and have impaired Pseudomonas aeruginosa phagocytosis, phenocopying CF MΦs. Importantly, we show that activated CF MΦs have reduced protein levels and altered localization of the remaining Ezrin to filopodia that form during activation. In summary, we have described a direct link from CFTR to Ezrin to PI3K/AKT signaling that is disrupted in CF, and thus promotes hyper-inflammation and weakens phagocytosis.


Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/pathology , Cytoskeletal Proteins/metabolism , Macrophage Activation , Macrophages/immunology , Signal Transduction , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Cystic Fibrosis/complications , Disease Models, Animal , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/immunology
...